3.10.27 \(\int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx\) [927]

3.10.27.1 Optimal result
3.10.27.2 Mathematica [A] (verified)
3.10.27.3 Rubi [A] (verified)
3.10.27.4 Maple [F]
3.10.27.5 Fricas [F(-1)]
3.10.27.6 Sympy [C] (verification not implemented)
3.10.27.7 Maxima [F]
3.10.27.8 Giac [F]
3.10.27.9 Mupad [F(-1)]

3.10.27.1 Optimal result

Integrand size = 19, antiderivative size = 107 \[ \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx=-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}-\frac {\sqrt [4]{b} \arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{c^{3/2}}+\frac {\sqrt [4]{b} \text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{c^{3/2}} \]

output
-b^(1/4)*arctan(b^(1/4)*(c*x)^(1/2)/(b*x^2+a)^(1/4)/c^(1/2))/c^(3/2)+b^(1/ 
4)*arctanh(b^(1/4)*(c*x)^(1/2)/(b*x^2+a)^(1/4)/c^(1/2))/c^(3/2)-2*(b*x^2+a 
)^(1/4)/c/(c*x)^(1/2)
 
3.10.27.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.86 \[ \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx=\frac {x \left (-2 \sqrt [4]{a+b x^2}-\sqrt [4]{b} \sqrt {x} \arctan \left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a+b x^2}}\right )+\sqrt [4]{b} \sqrt {x} \text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a+b x^2}}\right )\right )}{(c x)^{3/2}} \]

input
Integrate[(a + b*x^2)^(1/4)/(c*x)^(3/2),x]
 
output
(x*(-2*(a + b*x^2)^(1/4) - b^(1/4)*Sqrt[x]*ArcTan[(b^(1/4)*Sqrt[x])/(a + b 
*x^2)^(1/4)] + b^(1/4)*Sqrt[x]*ArcTanh[(b^(1/4)*Sqrt[x])/(a + b*x^2)^(1/4) 
]))/(c*x)^(3/2)
 
3.10.27.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.11, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {247, 266, 854, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {b \int \frac {\sqrt {c x}}{\left (b x^2+a\right )^{3/4}}dx}{c^2}-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 b \int \frac {c x}{\left (b x^2+a\right )^{3/4}}d\sqrt {c x}}{c^3}-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}\)

\(\Big \downarrow \) 854

\(\displaystyle \frac {2 b \int \frac {c^3 x}{c^2-b c^2 x^2}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{c^3}-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 b \int \frac {c x}{c^2-b c^2 x^2}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{c}-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}\)

\(\Big \downarrow \) 827

\(\displaystyle \frac {2 b \left (\frac {\int \frac {1}{c-\sqrt {b} c x}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{2 \sqrt {b}}-\frac {\int \frac {1}{\sqrt {b} x c+c}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{2 \sqrt {b}}\right )}{c}-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 b \left (\frac {\int \frac {1}{c-\sqrt {b} c x}d\frac {\sqrt {c x}}{\sqrt [4]{b x^2+a}}}{2 \sqrt {b}}-\frac {\arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{2 b^{3/4} \sqrt {c}}\right )}{c}-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {2 b \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{2 b^{3/4} \sqrt {c}}-\frac {\arctan \left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt {c} \sqrt [4]{a+b x^2}}\right )}{2 b^{3/4} \sqrt {c}}\right )}{c}-\frac {2 \sqrt [4]{a+b x^2}}{c \sqrt {c x}}\)

input
Int[(a + b*x^2)^(1/4)/(c*x)^(3/2),x]
 
output
(-2*(a + b*x^2)^(1/4))/(c*Sqrt[c*x]) + (2*b*(-1/2*ArcTan[(b^(1/4)*Sqrt[c*x 
])/(Sqrt[c]*(a + b*x^2)^(1/4))]/(b^(3/4)*Sqrt[c]) + ArcTanh[(b^(1/4)*Sqrt[ 
c*x])/(Sqrt[c]*(a + b*x^2)^(1/4))]/(2*b^(3/4)*Sqrt[c])))/c
 

3.10.27.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 854
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 
 1)/n)   Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n 
)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, - 
2^(-1)] && IntegersQ[m, p + (m + 1)/n]
 
3.10.27.4 Maple [F]

\[\int \frac {\left (b \,x^{2}+a \right )^{\frac {1}{4}}}{\left (c x \right )^{\frac {3}{2}}}d x\]

input
int((b*x^2+a)^(1/4)/(c*x)^(3/2),x)
 
output
int((b*x^2+a)^(1/4)/(c*x)^(3/2),x)
 
3.10.27.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx=\text {Timed out} \]

input
integrate((b*x^2+a)^(1/4)/(c*x)^(3/2),x, algorithm="fricas")
 
output
Timed out
 
3.10.27.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.22 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.46 \[ \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx=\frac {\sqrt [4]{a} \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 c^{\frac {3}{2}} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} \]

input
integrate((b*x**2+a)**(1/4)/(c*x)**(3/2),x)
 
output
a**(1/4)*gamma(-1/4)*hyper((-1/4, -1/4), (3/4,), b*x**2*exp_polar(I*pi)/a) 
/(2*c**(3/2)*sqrt(x)*gamma(3/4))
 
3.10.27.7 Maxima [F]

\[ \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {1}{4}}}{\left (c x\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((b*x^2+a)^(1/4)/(c*x)^(3/2),x, algorithm="maxima")
 
output
integrate((b*x^2 + a)^(1/4)/(c*x)^(3/2), x)
 
3.10.27.8 Giac [F]

\[ \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{\frac {1}{4}}}{\left (c x\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((b*x^2+a)^(1/4)/(c*x)^(3/2),x, algorithm="giac")
 
output
integrate((b*x^2 + a)^(1/4)/(c*x)^(3/2), x)
 
3.10.27.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{a+b x^2}}{(c x)^{3/2}} \, dx=\int \frac {{\left (b\,x^2+a\right )}^{1/4}}{{\left (c\,x\right )}^{3/2}} \,d x \]

input
int((a + b*x^2)^(1/4)/(c*x)^(3/2),x)
 
output
int((a + b*x^2)^(1/4)/(c*x)^(3/2), x)